Reconstruction and normalization of LISA for spatial analysis

Author:

Chen YanguangORCID

Abstract

The local indicators of spatial association (LISA) are important measures for spatial autocorrelation analysis. However, there is an inadvertent fault in the mathematical processes of deriving LISA in literature so that the local Moran and Geary indicators do not satisfy the second basic requirement for LISA: the sum of the local indicators is proportional to a global indicator. This paper aims at reconstructing the calculation formulae of the local Moran indexes and Geary coefficients through mathematical derivation and empirical evidence. Two sets of LISAs were clarified by new mathematical reasoning. One set of LISAs is based on non-normalized weights and non-centralized variable (MI1 and GC1), and the other set is based on row normalized weights and standardized variable (MI2 and GC2). The results show that the first set of LISAs satisfy the above-mentioned second requirement, but the second the set cannot. Then, the third set of LISA was proposed and can be treated as canonical forms (MI3 and GC3). This set of LISAs satisfies the second requirement. The observational data of city population and traffic mileage in Beijing-Tianjin-Hebei region of China were employed to verify the theoretical results. This study helps to clarify the misunderstandings about LISAs in the field of geospatial analysis.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Reference41 articles.

1. Three laws of the changes in economic geography;ZL Hu;Economic Geography,2018

2. Exceptionalism in geography: a methodological examination;FK Schaefer;Annals of the Association of American Geographers,1953

3. Spatial Autocorrelation and Spatial Filtering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3