Insilico exploration C. koseri ATP synthase inhibitors by pharmacophore-based virtual screening, molecular docking and MD simulation

Author:

Alanzi Abdullah R.ORCID,A. Z. Alanazi,Alhazzani Khalid

Abstract

Citrobacter koseri is a gram-negative rod that causes infections in people who have significant comorbidities and are immunocompromised. Antibiotic-resistant strains are becoming more common, which complicates infection treatment and highlights the need for innovative, effective drugs to fight these resistant strains. The enzyme complex ATP synthase participates in the adenosine triphosphate (ATP) synthesis, the fundamental energy currency of cells. This study used Computer-Aided Drug Design approaches to identify potential inhibitors of C. koseri ATP synthase. SWISS-MODEL was used to predict the 3D structure of C. koseri ATP synthase. A ligand-based pharmacophore model was developed using chemical features of ampicillin. Following ligand-based virtual screening across nine databases, the 2043 screened hits were docked to the ATP synthase active site using the standard precision mode of the glide tool. Based on their binding affinities, the top ten compounds were selected for additional investigation. The binding affinities of the chosen compounds ranged from -10.021 to -8.452 kcal/mol. The top four compounds (PubChem-25230613, PubChem-74936833, CHEMBL263035, PubChem-44208924) with the best ADMET characteristics and binding modes were chosen. Thus, the feasible binding mechanisms of the selected compounds were subjected to stability analysis using the MD Simulation study, which revealed the compounds’ stability as potent inhibitors within the protein binding pocket. This computational approach provides important insights into the rational design of novel therapeutics and emphasizes the importance of targeting essential metabolic pathways when combating antibiotic-resistant pathogens. Future experimental validation and optimization of the identified inhibitors is required to determine their efficacy and safety profiles for clinical use.

Publisher

Public Library of Science (PLoS)

Reference70 articles.

1. Citrobacter koseri pneumonia as initial presentation of underlying pulmonary adenocarcinoma;K Pennington;Clinical Medicine Insights: Case Reports 9: CCRep,2016

2. A case of Citrobacter koseri renal abscess and review of the literature;DT Hua;SAGE Open Medical Case Reports 10: 2050313X221135347.,2022

3. Citrobacter infections in humans: experience at the Seattle Veterans Administration Medical Center and a review of the literature;BA Lipsky;Reviews of infectious diseases,1980

4. Bacteremia due to Citrobacter species: significance of primary intraabdominal infection;C-C Shih;Clinical infectious diseases,1996

5. Sepsis, meningitis and cerebral abscesses caused by;CV Marecos;Citrobacter koseri. Case Reports,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3