Prediction of heart failure patients with distinct left ventricular ejection fraction levels using circadian ECG features and machine learning

Author:

Al Younis Sona M.ORCID,Hadjileontiadis Leontios J.,Khandoker Ahsan H.,Stefanini Cesare,Soulaidopoulos Stergios,Arsenos Petros,Doundoulakis Ioannis,Gatzoulis Konstantinos A.,Tsioufis Konstantinos

Abstract

Heart failure (HF) encompasses a diverse clinical spectrum, including instances of transient HF or HF with recovered ejection fraction, alongside persistent cases. This dynamic condition exhibits a growing prevalence and entails substantial healthcare expenditures, with anticipated escalation in the future. It is essential to classify HF patients into three groups based on their ejection fraction: reduced (HFrEF), mid-range (HFmEF), and preserved (HFpEF), such as for diagnosis, risk assessment, treatment choice, and the ongoing monitoring of heart failure. Nevertheless, obtaining a definitive prediction poses challenges, requiring the reliance on echocardiography. On the contrary, an electrocardiogram (ECG) provides a straightforward, quick, continuous assessment of the patient’s cardiac rhythm, serving as a cost-effective adjunct to echocardiography. In this research, we evaluate several machine learning (ML)-based classification models, such as K-nearest neighbors (KNN), neural networks (NN), support vector machines (SVM), and decision trees (TREE), to classify left ventricular ejection fraction (LVEF) for three categories of HF patients at hourly intervals, using 24-hour ECG recordings. Information from heterogeneous group of 303 heart failure patients, encompassing HFpEF, HFmEF, or HFrEF classes, was acquired from a multicenter dataset involving both American and Greek populations. Features extracted from ECG data were employed to train the aforementioned ML classification models, with the training occurring in one-hour intervals. To optimize the classification of LVEF levels in coronary artery disease (CAD) patients, a nested cross-validation approach was employed for hyperparameter tuning. HF patients were best classified using TREE and KNN models, with an overall accuracy of 91.2% and 90.9%, and average area under the curve of the receiver operating characteristics (AUROC) of 0.98, and 0.99, respectively. Furthermore, according to the experimental findings, the time periods of midnight-1 am, 8–9 am, and 10–11 pm were the ones that contributed to the highest classification accuracy. The results pave the way for creating an automated screening system tailored for patients with CAD, utilizing optimal measurement timings aligned with their circadian cycles.

Funder

Healthcare Engineering Innovation Center (HEIC) at Khalifa University, Abu Dhabi, UAE

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3