A novel differential evolution algorithm with multi-population and elites regeneration

Author:

Cao Yang,Luan JingzhengORCID

Abstract

Differential Evolution (DE) is widely recognized as a highly effective evolutionary algorithm for global optimization. It has proven its efficacy in tackling diverse problems across various fields and real-world applications. DE boasts several advantages, such as ease of implementation, reliability, speed, and adaptability. However, DE does have certain limitations, such as suboptimal solution exploitation and challenging parameter tuning. To address these challenges, this research paper introduces a novel algorithm called Enhanced Binary JADE (EBJADE), which combines differential evolution with multi-population and elites regeneration. The primary innovation of this paper lies in the introduction of strategy with enhanced exploitation capabilities. This strategy is based on utilizing the sorting of three vectors from the current generation to perturb the target vector. By introducing directional differences, guiding the search towards improved solutions. Additionally, this study adopts a multi-population method with a rewarding subpopulation to dynamically adjust the allocation of two different mutation strategies. Finally, the paper incorporates the sampling concept of elite individuals from the Estimation of Distribution Algorithm (EDA) to regenerate new solutions through the selection process in DE. Experimental results, using the CEC2014 benchmark tests, demonstrate the strong competitiveness and superior performance of the proposed algorithm.

Funder

Natural Science Foundation of Liaoning Province

Scientific Research Fund of Liaoning Provincial Education Department

Department of Science and Technology of Liaoning Province

Publisher

Public Library of Science (PLoS)

Reference48 articles.

1. Differential Evolution—A simple and efficient adaptive scheme for global optimization over continuous spaces;R. Storn;International Computer Science Institute Technical Report, Tech. Rep. TR-95-012,,1995

2. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces;R. Storn;J. Global Optim,1997

3. Differential evolution with Gaussian mutation for combined heat and power economic dispatch;C. Jena;Soft Comput,2016

4. Multi-objective differential evolution for feature selection in facial expression recognition systems,;U. Mlakar;Expert Syst. Appl,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3