Evaluating modern intrusion detection methods in the face of Gen V multi-vector attacks with fuzzy AHP-TOPSIS

Author:

Alhakami Wajdi

Abstract

The persistent evolution of cyber threats has given rise to Gen V Multi-Vector Attacks, complex and sophisticated strategies that challenge traditional security measures. This research provides a complete investigation of recent intrusion detection systems designed to mitigate the consequences of Gen V Multi-Vector Attacks. Using the Fuzzy Analytic Hierarchy Process (AHP) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), we evaluate the efficacy of several different intrusion detection techniques in adjusting to the dynamic nature of sophisticated cyber threats. The study offers an integrated analysis, taking into account criteria such as detection accuracy, adaptability, scalability, resource effect, response time, and automation. Fuzzy AHP is employed to establish priority weights for each factor, reflecting the nuanced nature of security assessments. Subsequently, TOPSIS is employed to rank the intrusion detection methods based on their overall performance. Our findings highlight the importance of behavioral analysis, threat intelligence integration, and dynamic threat modeling in enhancing detection accuracy and adaptability. Furthermore, considerations of resource impact, scalability, and efficient response mechanisms are crucial for sustaining effective defense against Gen V Multi-Vector Attacks. The integrated approach of Fuzzy AHP and TOPSIS presents a strong and adaptable strategy for decision-makers to manage the difficulties of evaluating intrusion detection techniques. This study adds to the ongoing discussion about cybersecurity by providing insights on the positive and negative aspects of existing intrusion detection systems in the context of developing cyber threats. The findings help organizations choose and execute intrusion detection technologies that are not only effective against existing attacks, but also adaptive to future concerns provided by Gen V Multi-Vector Attacks.

Funder

Taif University

Publisher

Public Library of Science (PLoS)

Reference50 articles.

1. Distributed denial of service attacks and its defenses in IoT: a survey;M. M. Salim;The Journal of Supercomputing,2020

2. Prevention techniques against distributed denial of service attacks in heterogeneous networks: A systematic review;A. Cheema;Security and Communication Networks,2022

3. P-STORE: Extension of STORE methodology to elicit privacy requirements;M. T. J. Ansari;Arabian Journal for Science and Engineering,2021

4. STORE: Security threat oriented requirements engineering methodology;M. T. J. Ansari;Journal of King Saud University-Computer and Information Sciences,2022

5. Gen-v cyber security;Check Point Software,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3