A high-speed gear reshaping method for electric vehicles combining the effects of input torque and speed variation

Author:

Liu WeifengORCID,Wei Cuicui,Wang Bo,Ding Zhicheng,Du Guitao

Abstract

In this study, we introduce an optimization method for high-speed gear trimming in electric vehicles, focusing on variations in input torque and speed. This approach is designed to aid in vibration suppression in electric vehicle gears. We initially use Tooth Contact Analysis (TCA) and Loaded Tooth Contact Analysis (LTCA) to investigate meshing point localization, considering changes in gear tooth surface and deformations due to load. Based on impact mechanics theory, we then derive a formula for the maximum impact force. A 12-degree-of-freedom bending-torsion-axis coupled dynamic model for the helical gear drive in the gearbox’s input stage is developed using the centralized mass method, allowing for an extensive examination of high-speed gear vibration characteristics. Through a genetic algorithm, we optimize the tooth profile and tooth flank parabolic modification coefficients, resulting in optimal vibration-suppressing tooth surfaces. Experimental results under various input torques and speeds demonstrate that the overall vibration amplitude is stable and lower than that of conventional gear shaping methods. Specifically, the root mean square of vibration acceleration along the meshing line under different conditions is 58.02 m/s2 and 20.33 m/s2, respectively. The vibration acceleration in the direction of the meshing line is 20.33 m/s2 and 20.02 m/s2 under varying torques and speeds, with 20.33 m/s2 being the lowest. Furthermore, the average magnitude of the meshing impact force is significantly reduced to 5015.2. This high-speed gear reshaping method not only enhances gear dynamics and reliability by considering changes in input torque and speed but also effectively reduces vibration in electric vehicle gear systems. The study provides valuable insights and methodologies for the design and optimization of electric vehicle gears, focusing on comprehensive improvement in dynamic performance.

Funder

State Key Laboratory of Advanced Brazing Filler Metals and Technology

Key Scientific Research Projects of Colleges and Universities of Henan, China

Publisher

Public Library of Science (PLoS)

Reference32 articles.

1. Simulation research on the time-varying meshing stiffness and vibration response of micro-cracks in gears under variable tooth shape parameters;J Ma;Appl Sci,2019

2. Avoidance of cutter retracting interference in noncircular gear shaping through 4-linkage model;F Zheng;J Manuf Sci Eng Trans ASME,2019

3. Parametric analysis of magnetorheological finishing process for improved performance of gear profile;RD Yadav;J Manuf Process,2020

4. Gear tribodynamic modeling and analysis considering tooth profile modification;Y Jiang;Tribol Int,2023

5. Multi-objective optimal design of modification for helical gear;W. Cheng;Mech Syst Signal Process,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3