A numerical approach applied to three-dimensional wave scattering problems subjected to obliquely propagating incident waves

Author:

Lv HaoORCID

Abstract

Accurately modeling artificial boundary conditions and wave inputs is paramount for numerical simulations of wave scattering in semi-infinite domains within seismic engineering. Traditionally, analysts focused on one- or two-dimensional free-field problems to determine wave inputs, primarily for vertically incident plane waves or obliquely incident waves parallel to two axes. However, these methods were inadequate for handling arbitrary incident directions in three-dimensional scenarios. This paper proposes a method for modeling seismic wave incidents in arbitrary directions. The basic theory of viscoelastic boundaries is leveraged, and a plane containing an arbitrary incident direction and the vertical coordinate axis is selected to establish a two-dimensional plane coordinate system. The two-dimensional free-field problem in this coordinate system is derived using the transfer matrix method. Subsequently, displacement, velocity, and stress are converted into the coordinate system where the three-dimensional calculation model is located, providing input for the three-dimensional scattering problem. Furthermore, the implementation of transmitting boundary conditions and viscoelastic boundary wave inputs is presented to enable incident wave scattering problems at any angle of the plane. The effect of oblique-incidence soil-structure dynamic interaction is also discussed, focusing on the parallel technology method adopted in this paper. With the relatively mature technology route and method, together with nuclear power systems and large-span deep-water bridge models, through examples of comparative analysis, qualitative and quantitative analyses are made on the impact on the soil mass, foundation, and structure when the seismic wave is an oblique incident.

Funder

Postdoctoral Fellowship Program of CPSF

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3