Identification of countercurrent tubule-vessel arrangements in the early development of mouse kidney based on immunohistochemistry and computer-assisted 3D visualization

Author:

Ma Yun-Sheng,Deng Si-Qi,Zhang Ping,Thomsen Jesper Skovhus,Andreasen Arne,Chang Shi-Jie,Zhang Jie,Gu Ling,Zhai Xiao-YueORCID

Abstract

Nephron loop-vessel countercurrent arrangement in the medulla provides the structural basis for the formation of concentrated urine. To date, the morphogenesis of it and relevant water and solutes transportation has not been fully elucidated. In this study, with immunohistochemistry for aquaporins (AQP) and Na-K-2Cl co-transporter (NKCC2), as well as 3D visualization, we noticed in embryonic day 14.5 kidneys that the countercurrent arrangement of two pairs of loop-vessel was established as soon as the loop and vessel both extended into the medulla. One pair happened between descending limb and ascending vasa recta, the other occurred between thick ascending limb and descending vasa recta. Meanwhile, the immunohistochemical results showed that the limb and vessel expressing AQP-1 such as descending thick and thin limb and descending vasa recta was always accompanied with AQP-1 negative ascending vasa recta or capillaries and thick ascending limb, respectively. Moreover, the thick ascending limb expressing NKCC2 closely contacted with descending vasa recta without expressing NKCC2. As kidney developed, an increasing number of loop-vessels in countercurrent arrangement extended into the interstitium of the medulla. In addition, we observed that the AQP-2 positive ureteric bud and their branches were separated from those pairs of tubule-vessels by a relatively large and thin-walled veins or capillaries. Thus, the present study reveals that the loop-vessel countercurrent arrangement is formed at the early stage of nephrogenesis, which facilitates the efficient transportation of water and electrolytes to maintain the medullary osmolality and to form a concentrated urine.

Funder

National Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3