Micro-osteoperforation for enhancement of orthodontic movement: A mechanical analysis using the finite element method

Author:

Gomes João Ricardo Cancian LagomarcinoORCID,Vargas Ivana Ardenghi,Rodrigues Antônio Flávio Aires,Gertz Luiz Carlos,Freitas Maria Perpétua,Miguens Sergio Augusto Quevedo,Ozkomur Ahmet,Hernandez Pedro Antonio González

Abstract

Background Micro-osteoperforation is a minimally invasive technique aimed at accelerating tooth movement. The goal of this novel experimental study was to assess tooth movement and stress distribution produced by the force of orthodontic movement on the tooth structure, periodontal ligament, and maxillary bone structure, with and without micro-osteoperforation, using the finite element method. Materials and methods Cone-beam computed tomography was used to obtain a virtual model of the maxilla and simulate the extraction of right and left first premolars. Three micro-osteoperforations (1.5 x 5 mm) were made in the hemiarch on the distal and mesial surfaces of upper canines, according to the power tip geometry of the Propel device (Propel Orthodontics, Ossining, New York, USA). An isotropic model of the maxilla was fabricated according to the finite element method by insertion of mechanical properties of the tooth structures, with orthodontic force (1.5 N) simulation in the distal movement on the upper canine of a hemiarch. Results Initial movement was larger when micro-osteoperforations were performed on the dental crown (24%) and on the periodontal ligament (29%). In addition, stress distribution was higher on the bone structure (31%) when micro-osteoperforations were used. Conclusions Micro-osteoperforations considerably increased the movement of both the dental crown and periodontal ligament, which highlights their importance in the improvement of orthodontic movement, as well as in stress distribution across the bone structure. Important stress absorption regions were identified within micro-osteoperforations.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3