Identifying the interplay between protective measures and settings on the SARS-CoV-2 transmission using a Bayesian network

Author:

Fuster-Parra PilarORCID,Huguet-Torres AinaORCID,Castro-Sánchez Enrique,Bennasar-Veny MiquelORCID,Yañez Aina M.ORCID

Abstract

Contact tracing played a crucial role in minimizing the onward dissemination of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in the recent pandemic. Previous studies had also shown the effectiveness of preventive measures such as mask-wearing, physical distancing, and exposure duration in reducing SARS-CoV-2 transmission. However, there is still a lack of understanding regarding the impact of various exposure settings on the spread of SARS-CoV-2 within the community, as well as the most effective preventive measures, considering the preventive measures adherence in different daily scenarios. We aimed to evaluate the effect of individual protective measures and exposure settings on the community transmission of SARS-CoV-2. Additionally, we aimed to investigate the interaction between different exposure settings and preventive measures in relation to such SARS-CoV-2 transmission. Routine SARS-CoV-2 contact tracing information was supplemented with additional data on individual measures and exposure settings collected from index patients and their close contacts. We used a case-control study design, where close contacts with a positive test for SARS-CoV-2 were classified as cases, and those with negative results classified as controls. We used the data collected from the case-control study to construct a Bayesian network (BN). BNs enable predictions for new scenarios when hypothetical information is introduced, making them particularly valuable in epidemiological studies. Our results showed that ventilation and time of exposure were the main factors for SARS-CoV-2 transmission. In long time exposure, ventilation was the most effective factor in reducing SARS-CoV-2, while masks and physical distance had on the other hand a minimal effect in this ventilation spaces. However, face masks and physical distance did reduce the risk in enclosed and unventilated spaces. Distance did not reduce the risk of infection when close contacts wore a mask. Home exposure presented a higher risk of SARS-CoV-2 transmission, and any preventive measures posed a similar risk across all exposure settings analyzed. Bayesian network analysis can assist decision-makers in refining public health campaigns, prioritizing resources for individuals at higher risk, and offering personalized guidance on specific protective measures tailored to different settings or environments.

Funder

Royal College of Nurses from the Balearic Islands

Publisher

Public Library of Science (PLoS)

Reference57 articles.

1. A Novel Coronavirus from Patients with Pneumonia in China, 2019;N Zhu;N Engl J Med,2020

2. WHO. Novel Coronavirus (2019nCoV) situation report-51. 2020 [cited 2023]; Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10.

3. WHO. Infection prevention and control of epidemic- and pandemic-prone acute respiratory infections in health care. 2014 [Cited 2023]; Available from: https://www.who.int/publications/i/item/infection-prevention-and-control-of-epidemic-and-pandemic-prone-acute-respiratory-infections-in-health-care.

4. Dynamic Bayesian network in infectious diseases surveillance: a simulation study;T Zhang;Sci Rep,2019

5. OurWorldinData. Which countries do COVID-19 contact tracing? 2022 [cited 2022]; Available from: https://ourworldindata.org/grapher/covid-contact-tracing?time=2022-04-17.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3