Influence of climate variables on dengue fever occurrence in the southern region of Thailand

Author:

Abdulsalam Fatima IbrahimORCID,Antunez PabloORCID,Yimthiang SupabhornORCID,Jawjit WaritORCID

Abstract

The 3-5year epidemic cycle of dengue fever in Thailand makes it a major re-emerging public health problem resulting in being a burden in endemic areas. Although the Thai Ministry of Public Health adopted the WHO dengue control strategy, all dengue virus serotypes continue to circulate. Health officers and village health volunteers implement some intervention options but there is a need to ascertain most appropriate (or a combination of) interventions regarding the environment and contextual factors that may undermine the effectiveness of such interventions. This study aims to understand the dengue-climate relationship patterns at the district level in the southern region of Thailand from 2002 to 2018 by examining the statistical association between dengue incidence rate and eight environmental patterns, testing the hypothesis of equal incidence of these. Data on environmental variables and dengue reported cases in Nakhon Si Thammarat province situated in the south of Thailand from 2002 to 2018 were analysed to (1) detect the environmental factors that affect the risk of dengue infectious disease; to (2) determine if disease risk is increasing or decreasing over time; and to (3) identify the high-risk district areas for dengue cases that need to be targeted for interventions. To identify the predictors that have a high and significant impact on reported dengue infection, three steps of analysis were used. First, we used Partial Least Squares (PLS) Regression and Poisson Regression, a variant of the Generalized Linear Model (GLM). Negative co-efficient in correspondence with the PLS components suggests that sea-level pressure, wind speed, and pan evaporation are associated with dengue occurrence rate, while other variables were positively associated. Using the Akaike information criterion in the stepwise GLM, the filtered predictors were temperature, precipitation, cloudiness, and sea level pressure with the standardized coefficients showing that the most influential variable is cloud cover (three times more than temperature and precipitation). Also, dengue occurrence showed a constant negative response to the average increase in sea-level pressure values. In southern Thailand, the predictors that have been locally determined to drive dengue occurrence are temperature, rainfall, cloud cover, and sea-level pressure. These explanatory variables should have important future implications for epidemiological studies of mosquito-borne diseases, particularly at the district level. Predictive indicators guide effective and dynamic risk assessments, targeting pre-emptive interventions.

Funder

Walailak University

Publisher

Public Library of Science (PLoS)

Reference60 articles.

1. WHO. Dengue Guidelines for diagnosis, treatment, prevention and control. Geneva, Switzerland: Special Programme for Research and Training in Tropical Diseases. Epidemic and Pandemic Alert. World Health Organization, Geneva; 2009.

2. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century;DJ Gubler;Trends Microbiol,2002

3. Economic impact of dengue illness in the Americas;DS Shepard;Am J Trop Med Hyg,2011

4. Effect of climate change on vector-borne disease risk in the UK;JM Medlock;The Lancet Infectious Diseases,2015

5. A dengue transmission model in Thailand considering sequential infections with all four serotypes;E Chikaki;The Journal of Infection in Developing Countries,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3