Development of a clinical prediction score for Ebola virus disease screening at triage centers in the Democratic Republic of the Congo

Author:

Yango JepsyORCID,Tshomba Antoine OlomaORCID,Kwete PapyORCID,Madinga Joule,Mulangu Sabue,Mbala-Kingebeni Placide,Henriquez-Trujillo Aquiles R.ORCID,Jacobs Bart K. M.ORCID

Abstract

The 2018–2020 Ebola virus disease (EVD) outbreak in the Democratic Republic of the Congo (DRC) was the largest since the disease‘s discovery in 1976. Rapid identification and isolation of EVD patients are crucial during triage. This study aimed to develop a clinical prediction score for EVD using clinical and epidemiological predictors. We conducted a retrospective cross-sectional study using surveillance data from EVD outbreak, collected during routine clinical care at the Ebola Transit Center (ETC) in Beni, DRC, from 2018 to 2020. The Spiegelhalter and Knill-Jones method was used for score development, including potential predictors with an adjusted likelihood ratio above 2 or below 0.50. Validation was performed using a dataset previously published in PLOSOne by Tshomba et al. Among 3725 patients screened, 3698 fulfilled the inclusion criteria, with 571 (15.4%) testing positive for EVD via RT-PCR Test. Seven predictive factors were identified: asthenia, sore throat, conjunctivitis, bleeding gums, hematemesis, contact with a sick person, and contact with a traditional healer. The prediction score achieved an Area under the receiver operating characteristic (AUROC) of 0.764, with 81.4% sensitivity and 53.6% specificity at a -1 cutoff. External validation demonstrated an AUROC of 0.766, with 80.8% sensitivity and 41.4% specificity at the -1 cutoff. Our study developed a screening tool to assess the risk of suspected patients developing EVD and being admitted to ETUs for RT-PCR testing and treatment. External validation results affirmed the model’s reliability and generalizability in similar settings, suggesting its potential integration into clinical practice. Given the severity and urgency of EVD as well as the risk nosocomial EVD transmission, it is essential to continuously update these models with real-time data on symptoms, disease progression, patient outcomes and validated RDT during EVD outbreaks. This approach will enhance model accuracy, enabling more precise risk assessments and more effective outbreak management.

Publisher

Public Library of Science (PLoS)

Reference21 articles.

1. World Health Organization. Ebola virus disease. https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease. Accessed April 20, 2023

2. ICTV Virus Taxonomy Profile: Filoviridae;JH Kuhn;J Gen Virol,2019

3. A randomized, controlled trial of Ebola virus disease therapeutics;M Sabue Mulangu;N Engl J Med,2019

4. Ebola Virus Disease Outbreak—Democratic Republic of the Congo, August 2018–November 2019;A Aruna;MMWR Morb Mortal Wkly Rep,2019

5. The Ongoing Ebola Epidemic in the Democratic Republic of Congo, 2018–2019;O Ilunga Kalenga;N Engl J Med,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3