Global trends in antimicrobial use in food-producing animals: 2020 to 2030

Author:

Mulchandani RanyaORCID,Wang YuORCID,Gilbert Marius,Van Boeckel Thomas P.ORCID

Abstract

Use of antimicrobials in farming has enabled the growth of intensive animal production and helped in meeting the global increase in demand for animal protein. However, the widespread use of veterinary antimicrobials drives antimicrobial resistance, with important consequences for animal health, and potentially human health. Global monitoring of antimicrobial use is essential: first, to track progress in reducing the reliance of farming on antimicrobials. Second, to identify countries where antimicrobial-stewardship efforts should be targeted to curb antimicrobial resistance. Data on usage of antimicrobials in food animals were collected from 42 countries. Multivariate regression models were used in combination with projections of animal counts for cattle, sheep, chicken, and pigs from the Food and Agriculture Organization to estimate global antimicrobial usage of veterinary antimicrobials in 2020 and 2030. Maps of animal densities were used to identify geographic hotspots of antimicrobial use. In each country, estimates of antimicrobial use (tonnes) were calibrated to match continental-level reports of antimicrobial use intensity (milligrams per kilogram of animal) from the World Organization for Animal Health, as well as country-level reports of antimicrobial use from countries that made this information publicly available. Globally, antimicrobial usage was estimated at 99,502 tonnes (95% CI 68,535–198,052) in 2020 and is projected, based on current trends, to increase by 8.0% to 107,472 tonnes (95% CI: 75,927–202,661) by 2030. Hotspots of antimicrobial use were overwhelmingly in Asia (67%), while <1% were in Africa. Findings indicate higher global antimicrobial usage in 2030 compared to prior projections that used data from 2017; this is likely associated with an upward revision of antimicrobial use in Asia/Oceania (~6,000 tonnes) and the Americas (~4,000 tonnes). National-level reporting of antimicrobial use should be encouraged to better evaluate the impact of national policies on antimicrobial use levels.

Funder

Horizon 2020

Swiss National Science Foundation Eccellenza Fellowship

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3