Differential diagnosis of COVID-19 and influenza

Author:

Alemi FarrokhORCID,Vang Jee,Wojtusiak Janusz,Guralnik ElinaORCID,Peterson RacheleORCID,Roess AmiraORCID,Jain Praduman

Abstract

This study uses two existing data sources to examine how patients’ symptoms can be used to differentiate COVID-19 from other respiratory diseases. One dataset consisted of 839,288 laboratory-confirmed, symptomatic, COVID-19 positive cases reported to the Centers for Disease Control and Prevention (CDC) from March 1, 2019, to September 30, 2020. The second dataset provided the controls and included 1,814 laboratory-confirmed influenza positive, symptomatic cases, and 812 cases with symptomatic influenza-like-illnesses. The controls were reported to the Influenza Research Database of the National Institute of Allergy and Infectious Diseases (NIAID) between January 1, 2000, and December 30, 2018. Data were analyzed using case-control study design. The comparisons were done using 45 scenarios, with each scenario making different assumptions regarding prevalence of COVID-19 (2%, 4%, and 6%), influenza (0.01%, 3%, 6%, 9%, 12%) and influenza-like-illnesses (1%, 3.5% and 7%). For each scenario, a logistic regression model was used to predict COVID-19 from 2 demographic variables (age, gender) and 10 symptoms (cough, fever, chills, diarrhea, nausea and vomiting, shortness of breath, runny nose, sore throat, myalgia, and headache). The 5-fold cross-validated Area under the Receiver Operating Curves (AROC) was used to report the accuracy of these regression models. The value of various symptoms in differentiating COVID-19 from influenza depended on a variety of factors, including (1) prevalence of pathogens that cause COVID-19, influenza, and influenza-like-illness; (2) age of the patient, and (3) presence of other symptoms. The model that relied on 5-way combination of symptoms and demographic variables, age and gender, had a cross-validated AROC of 90%, suggesting that it could accurately differentiate influenza from COVID-19. This model, however, is too complex to be used in clinical practice without relying on computer-based decision aid. Study results encourage development of web-based, stand-alone, artificial Intelligence model that can interview patients and help clinicians make quarantine and triage decisions.

Funder

national cancer institute

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3