Machine learning models of tobacco susceptibility and current use among adolescents from 97 countries in the Global Youth Tobacco Survey, 2013-2017

Author:

Kim NayoungORCID,Loh Wei-YinORCID,McCarthy Danielle E.ORCID

Abstract

Adolescents are particularly vulnerable to tobacco initiation and escalation. Identifying factors associated with adolescent tobacco susceptibility and use can guide tobacco prevention efforts. Novel machine learning (ML) approaches efficiently identify interactive relations among factors of tobacco risks and identify high-risk subpopulations that may benefit from targeted prevention interventions. Nationally representative cross-sectional 2013–2017 Global Youth Tobacco Survey (GYTS) data from 97 countries (28 high-income and 69 low-and middle-income countries) from 342,481 adolescents aged 13–15 years (weighted N = 52,817,455) were analyzed using ML regression tree models, accounting for sampling weights. Predictors included demographics (sex, age), geography (region, country-income), and self-reported exposure to tobacco marketing, secondhand smoke, and tobacco control policies. 11.9% (95% CI 11.1%-12.6%) of tobacco-naïve adolescents were susceptible to tobacco use and 11.7% (11.0%-12.5%) of adolescents reported using any tobacco product (cigarettes, other smoked tobacco, smokeless tobacco) in the past 30 days. Regression tree models found that exposure or receptivity to tobacco industry promotions and secondhand smoke exposure predicted increased risks of susceptibility and use, while support for smoke-free air policies predicted decreased risks of tobacco susceptibility and use. Anti-tobacco school education and health warning messages on product packs predicted susceptibility or use, but their protective effects were not evident across all adolescent subgroups. Sex, region, and country-income moderated the effects of tobacco promotion and control factors on susceptibility or use, showing higher rates of susceptibility and use in males and high-income countries, Africa and the Americas (susceptibility), and Europe and Southeast Asia (use). Tobacco policy-related factors robustly predicted both tobacco susceptibility and use in global adolescents, and interacted with adolescent characteristics and other environments in complex ways that stratified adolescents based on their tobacco risk. These findings emphasize the importance of efficient ML modeling of interactions in tobacco risk prediction and suggest a role for targeted prevention strategies for high-risk adolescents.

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3