Predicting blood lead in uruguayan children: Individual- vs neighborhood-level ensemble learners

Author:

Frndak SethORCID,Queirolo Elena I.,Mañay Nelly,Yu Guan,Ahmed Zia,Barg GabrielORCID,Colder Craig,Kordas Katarzyna

Abstract

Predicting childhood blood lead levels (BLLs) has had mixed success, and it is unclear if individual- or neighborhood-level variables are most predictive. An ensemble machine learning (ML) approach to identify the most relevant predictors of BLL ≥2μg/dL in urban children was implemented. A cross-sectional sample of 603 children (~7 years of age) recruited between 2009–2019 from Montevideo, Uruguay participated in the study. 77 individual- and 32 neighborhood-level variables were used to predict BLLs ≥2μg/dL. Three ensemble learners were created: one with individual-level predictors (Ensemble-I), one with neighborhood-level predictors (Ensemble-N), and one with both (Ensemble-All). Each ensemble learner comprised four base classifiers with 50% training, 25% validation, and 25% test datasets. Predictive performance of the three ensemble models was compared using area under the curve (AUC) for the receiver operating characteristic (ROC), precision, sensitivity, and specificity on the test dataset. Ensemble-I (AUC: 0.75, precision: 0.56, sensitivity: 0.79, specificity: 0.65) performed similarly to Ensemble-All (AUC: 0.75, precision: 0.63, sensitivity: 0.79, specificity: 0.69). Ensemble-N (AUC: 0.51, precision: 0.0, sensitivity: 0.0, specificity: 0.50) severely underperformed. Year of enrollment was most important in Ensemble-I and Ensemble-All, followed by household water Pb. Three neighborhood-level variables were among the top 10 important predictors in Ensemble-All (density of bus routes, dwellings with stream/other water source and distance to nearest river). The individual-level only model performed best, although precision was improved when both neighborhood and individual-level variables were included. Future predictive models of lead exposure should consider proximal predictors (i.e., household characteristics).

Funder

National Institute of Environmental Health Sciences

Publisher

Public Library of Science (PLoS)

Reference58 articles.

1. Global health burden and cost of lead exposure in children and adults: a health impact and economic modelling analysis;B Larsen;The Lancet Planetary Health,2023

2. The decline in blood lead levels in the United States: the National Health and Nutrition Examination Surveys (NHANES).;JL Pirkle;Jama,1994

3. Blood lead levels in children aged 1–5 years—United States, 1999–2010;W Wheeler;MMWR Morbidity and mortality weekly report,2013

4. Blood Lead Levels in US Children Ages 1–11 Years, 1976–2016;KB Egan;Environmental health perspectives,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3