Abstract
Transmission of respiratory pathogens, such as Mycobacterium tuberculosis and severe acute respiratory syndrome coronavirus 2, is more likely during close, prolonged contact and when sharing a poorly ventilated space. Reducing overcrowding of health facilities is a recognised infection prevention and control (IPC) strategy; reliable estimates of waiting times and ‘patient flow’ would help guide implementation. As part of the Umoya omuhle study, we aimed to estimate clinic visit duration, time spent indoors versus outdoors, and occupancy density of waiting rooms in clinics in KwaZulu-Natal (KZN) and Western Cape (WC), South Africa. We used unique barcodes to track attendees’ movements in 11 clinics, multiple imputation to estimate missing arrival and departure times, and mixed-effects linear regression to examine associations with visit duration. 2,903 attendees were included. Median visit duration was 2 hours 36 minutes (interquartile range [IQR] 01:36–3:43). Longer mean visit times were associated with being female (13.5 minutes longer than males; p<0.001) and attending with a baby (18.8 minutes longer than those without; p<0.01), and shorter mean times with later arrival (14.9 minutes shorter per hour after 0700; p<0.001). Overall, attendees spent more of their time indoors (median 95.6% [IQR 46–100]) than outdoors (2.5% [IQR 0–35]). Attendees at clinics with outdoor waiting areas spent a greater proportion (median 13.7% [IQR 1–75]) of their time outdoors. In two clinics in KZN (no appointment system), occupancy densities of ~2.0 persons/m2 were observed in smaller waiting rooms during busy periods. In one clinic in WC (appointment system, larger waiting areas), occupancy density did not exceed 1.0 persons/m2 despite higher overall attendance. In this study, longer waiting times were associated with early arrival, being female, and attending with a young child. Occupancy of waiting rooms varied substantially between rooms and over the clinic day. Light-touch estimation of occupancy density may help guide interventions to improve patient flow.
Funder
Economic and Social Research Council
The Bloomsbury SET
Publisher
Public Library of Science (PLoS)
Reference71 articles.
1. Tuberculosis from transmission in clinics in high HIV settings may be far higher than contact data suggest;N McCreesh;Int J Tuberc Lung Dis,2020
2. Nosocomial Transmission of Extensively Drug-Resistant Tuberculosis in a Rural Hospital in South Africa;NR Gandhi;J Infect Dis,2013
3. Lessells R, Moosa Y, de Oliveira T. Report into a nosocomial outbreak of coronavirus disease 2019 (COVID‐19) at Netcare St. Augustine’s Hospital. 2020. https://www.krisp.org.za/manuscripts/StAugustinesHospitalOutbreakInvestigation_FinalReport_15may2020_comp.pdf (accessed 2021 Jan 26)
4. Addressing Institutional Amplifiers in the Dynamics and Control of Tuberculosis Epidemics;S Basu;Am J Trop Med Hyg,2011
5. Tuberculosis among health care workers;I Baussano;Emerg Infect Dis,2011