A mathematical model and inference method for bacterial colonization in hospital units applied to active surveillance data for carbapenem-resistant enterobacteriaceae

Author:

Ong Karen M.ORCID,Phillips Michael S.ORCID,Peskin Charles S.

Abstract

Widespread use of antibiotics has resulted in an increase in antimicrobial-resistant microorganisms. Although not all bacterial contact results in infection, patients can become asymptomatically colonized, increasing the risk of infection and pathogen transmission. Consequently, many institutions have begun active surveillance, but in non-research settings, the resulting data are often incomplete and may include non-random testing, making conventional epidemiological analysis problematic. We describe a mathematical model and inference method for in-hospital bacterial colonization and transmission of carbapenem-resistant Enterobacteriaceae that is tailored for analysis of active surveillance data with incomplete observations. The model and inference method make use of the full detailed state of the hospital unit, which takes into account the colonization status of each individual in the unit and not only the number of colonized patients at any given time. The inference method computes the exact likelihood of all possible histories consistent with partial observations (despite the exponential increase in possible states that can make likelihood calculation intractable for large hospital units), includes techniques to improve computational efficiency, is tested by computer simulation, and is applied to active surveillance data from a 13-bed rehabilitation unit in New York City. The inference method for exact likelihood calculation is applicable to other Markov models incorporating incomplete observations. The parameters that we identify are the patient–patient transmission rate, pre-existing colonization probability, and prior-to-new-patient transmission probability. Besides identifying the parameters, we predict the effects on the total prevalence (0.07 of the total colonized patient-days) of changing the parameters and estimate the increase in total prevalence attributable to patient–patient transmission (0.02) above the baseline pre-existing colonization (0.05). Simulations with a colonized versus uncolonized long-stay patient had 44% higher total prevalence, suggesting that the long-stay patient may have been a reservoir of transmission. High-priority interventions may include isolation of incoming colonized patients and repeated screening of long-stay patients.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference103 articles.

1. Multi-institute analysis of carbapenem resistance reveals remarkable diversity, unexplained mechanisms, and limited clonal outbreaks;G. C. Cerqueira;Proceedings of the National Academy of Sciences,2017

2. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace;L. K. Logan;The Journal of Infectious Diseases,2017

3. Outbreak of infections due to KPC-2-producing Klebsiella pneumoniae in a hospital in Crete (Greece);H. C. Maltezou;Journal of Infection,2009

4. Clonal spread of KPC-2 carbapenemase-producing Klebsiella pneumoniae strains in Greece;S. Pournaras;Journal of Antimicrobial Chemotherapy,2009

5. Carbapenem-resistant enterobacteriaceae: A potential threat;MJ Schwaber;JAMA,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3