Expression of a gene for an MLX56 defense protein derived from mulberry latex confers strong resistance against a broad range of insect pests on transgenic tomato lines

Author:

Murata Mika,Konno Kotaro,Wasano Naoya,Mochizuki Atsushi,Mitsuhara IchiroORCID

Abstract

Insect pests cause serious damage in crop production, and various attempts have been made to produce insect-resistant crops, including the expression of genes for proteins with anti-herbivory activity, such as Bt (Bacillus thuringiensis) toxins. However, the number of available genes with sufficient anti-herbivory activity is limited. MLX56 is an anti-herbivory protein isolated from the latex of mulberry plants, and has been shown to have strong growth-suppressing activity against the larvae of a variety of lepidopteran species. As a model of herbivore-resistant plants, we produced transgenic tomato lines expressing the gene for MLX56. The transgenic tomato lines showed strong anti-herbivory activities against the larvae of the common cutworm, Spodoptera litura. Surprisingly, the transgenic tomato lines also exhibited strong activity against the attack of western flower thrips, Frankliniera occidentalis. Further, growth of the hadda beetle, Henosepilachna vigintioctopunctata, fed on leaves of transgenic tomato was significantly retarded. The levels of damage caused by both western flower thrips and hadda beetles were negligible in the high-MLX56-expressing tomato line. These results indicate that introduction of the gene for MLX56 into crops can enhance crop resistance against a wide range of pest insects, and that MLX56 can be utilized in developing genetically modified (GM) pest-resistant crops.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Host Plant Resistance to Insects in Vegetable Crops;Plant Resistance to Insects in Major Field Crops;2024

2. CopE and TLR6 RNAi-mediated tomato resistance to western flower thrips;Journal of Integrative Agriculture;2023-02

3. Proteomics in Mulberry;Compendium of Plant Genomes;2023

4. Impression of climatic variation on flora, fauna, and human being: A present state of art;Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence;2023

5. Structure and Function of Plant Chitin-binding Lectins and Tomato Lectin;Trends in Glycoscience and Glycotechnology;2022-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3