Investigating variations of precipitation concentration in the transitional zone between Qinling Mountains and Loess Plateau in China: Implications for regional impacts of AO and WPSH

Author:

Li Ci,Zhang HongboORCID,Singh Vijay P.,Fan Jingjing,Wei Xiaowei,Yang Jiantao,Wei Xingchen

Abstract

Changes in precipitation patterns greatly impact regional drought/flood risk management and utilization of water resources. The main purpose of this paper was to investigate spatio-temporal variability of precipitation concentration in the transitional zone between Qinling Mountains (QDM), Guanzhong Plain (GZP) and the Loess Plateau (LPNS) in China, using monthly-scale precipitation concentration index (PCI) and daily-scale concentration index (CI) from daily rainfall records. The Mann-Kendall method was employed to illustrate the change in trend of PCI and CI, the Kriging interpolation method was adopted to measure spatial distribution, and the Wavelet transforms were used to explore their spatio-temporal correlation with the Arctic Oscillation (AO) & Western Pacific Subtropical High (WPSH) for revealing the potential attribution of precipitation concentration variation. Also, the regional implication of CI was investigated in the zone to provide local knowledge of the index application. Results showed that annual precipitation demonstrated a north-south increasing layered spatial distribution in the zone, representing a generally decreasing trend. The CI change generally exhibited a more significant decreasing trend than did PCI in LPNS and GZP due to AO slowly increasing over time, with a spatially weak layered or radial north-south decay, and an insignificant increasing trend in QDM impacted by the enhancing WPSH, with an obvious layered or radial spatial distribution. The spatiotemporal pattern of PCI variation represented similar characteristics in attribution with CI, but an inverse spatial distribution due to the phase difference (positive and negative effects) of AO and WPSH influencing seasonal precipitation. Regional analysis of CI showed that the CI value with over 0.62 indicated that approximately 80% of precipitation was contributed by 25% of the rainiest days in this zone. Fortunately, the area with this high CI has been getting smaller, implying a positive trend toward regional flash flood and debris flow control.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province, China

Natural Science Basic Research Program of Shaanxi Province, China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3