Asynchronous quasi delay insensitive majority voters corresponding to quintuple modular redundancy for mission/safety-critical applications

Author:

Balasubramanian P.ORCID,Mastorakis N. E.

Abstract

Electronic circuits and systems employed in mission- and safety-critical applications such as space, aerospace, nuclear plants etc. tend to suffer from multiple faults due to radiation and other harsh external phenomena. To overcome single or multiple faults from affecting electronic circuits and systems, progressive module redundancy (PMR) has been suggested as a potential solution that recommends the use of different levels of redundancy for the vulnerable portions of a circuit or system depending upon their criticality. According to PMR, triple modular redundancy (TMR) can be used where a single fault is likely to occur and should be masked, and quintuple modular redundancy (QMR) can be used where double faults are likely to occur and should be masked. In this article, we present asynchronous QDI majority voter designs for QMR and state which are preferable from cycle time (i.e., speed), area, power, and energy perspectives. Towards this, we implemented example QMR circuits in a robust QDI asynchronous design style by employing a delay insensitive dual rail code for data encoding and adopting four-phase handshake protocols for data communication. Based on physical implementations using a 32/28nm CMOS process, we find that our proposed QMR majority voter achieves improved optimization in speed and energy.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. QDI Binary Comparator Networks and their Application in Combinational Logic;2024 27th International Symposium on Design & Diagnostics of Electronic Circuits & Systems (DDECS);2024-04-03

2. Impact of neutron induced Single-Event Multiple Transients in ADDLL based frequency multiplier;AEU - International Journal of Electronics and Communications;2022-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3