Application of a time-series deep learning model to predict cardiac dysrhythmias in electronic health records

Author:

Guo Aixia,Smith Sakima,Khan Yosef M.,Langabeer II James R.,Foraker Randi E.

Abstract

Background Cardiac dysrhythmias (CD) affect millions of Americans in the United States (US), and are associated with considerable morbidity and mortality. New strategies to combat this growing problem are urgently needed. Objectives Predicting CD using electronic health record (EHR) data would allow for earlier diagnosis and treatment of the condition, thus improving overall cardiovascular outcomes. The Guideline Advantage (TGA) is an American Heart Association ambulatory quality clinical data registry of EHR data representing 70 clinics distributed throughout the US, and has been used to monitor outpatient prevention and disease management outcome measures across populations and for longitudinal research on the impact of preventative care. Methods For this study, we represented all time-series cardiovascular health (CVH) measures and the corresponding data collection time points for each patient by numerical embedding vectors. We then employed a deep learning technique–long-short term memory (LSTM) model–to predict CD from the vector of time-series CVH measures by 5-fold cross validation and compared the performance of this model to the results of deep neural networks, logistic regression, random forest, and Naïve Bayes models. Results We demonstrated that the LSTM model outperformed other traditional machine learning models and achieved the best prediction performance as measured by the average area under the receiver operator curve (AUROC): 0.76 for LSTM, 0.71 for deep neural networks, 0.66 for logistic regression, 0.67 for random forest, and 0.59 for Naïve Bayes. The most influential feature from the LSTM model were blood pressure. Conclusions These findings may be used to prevent CD in the outpatient setting by encouraging appropriate surveillance and management of CVH.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference36 articles.

1. https://www.scripps.org/sparkle-assets/documents/heart_rhythm_facts.pdf.

2. Global public health problem of sudden cardiac death;R Mehra;J Electrocardiol,2007

3. http://www.heart.org/en/health-topics/arrhythmia/prevention—treatment-of-arrhythmia.

4. Mining electronic health records: Towards better research applications and clinical care;PB Jensen;Nature Reviews Genetics,2012

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3