Development of a sensitive molecular diagnostic assay for detecting Borrelia burgdorferi DNA from the blood of Lyme disease patients by digital PCR

Author:

Das SrirupaORCID,Hammond-McKibben Denise,Guralski Donna,Lobo Sandra,Fiedler Paul N.

Abstract

Lyme disease patients would greatly benefit from a timely, sensitive, and specific molecular diagnostic test that can detect the causal agent Borrelia burgdorferi at the onset of symptoms. Currently available diagnostic methods recommended by the Centers for Disease Control and Prevention for Lyme disease involve indirect serological tests that rely on the detection of a host-antibody response, which often takes more than three weeks to develop. With this process, many positive cases are not detected within a timely manner, preventing a complete cure. In this study, we have developed a digital polymerase chain reaction (PCR) assay that detects Lyme disease on clinical presentation with a sensitivity two-fold higher than that of the currently available diagnostic methods, using a cohort of patient samples collected from the Lyme disease endemic state of Connecticut, USA, in 2016–2018. Digital PCR technology was chosen as it is more advanced and sensitive than other PCR techniques in detecting rare targets. The analytical detection sensitivity of this diagnostic assay is approximately three genome copies of B. burgdorferi. The paucity of spirochetes in the bloodstream of Lyme disease patients has hindered the clinical adoption of PCR-based diagnostic tests. However, this drawback was overcome by using a comparatively larger sample volume, applying pre-analytical processing to the blood samples, and implementing a pre-amplification step to enrich for B. burgdorferi-specific gene targets before the patient samples are analyzed via digital PCR technology. Pre-analytical processing of blood samples from acute patients revealed that the best sample type for Lyme disease detection is platelet-rich plasma rather than whole blood. If detected in a timely manner, Lyme disease can be completely cured, thus limiting antibiotic overuse and associated morbidities.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference27 articles.

1. Centers for Disease Control and Prevention. Data and Surveillance. Available from: https://www.cdc.gov/lyme/datasurveillance/index.html.

2. Centers for Disease Control and Prevention. Signs and symptoms of untreated Lyme disease. Available from: https://www.cdc.gov/lyme/signs_symptoms/index.html.

3. Centers for Disease Control and Prevention. Diagnosis and Testing. Available from: https://www.cdc.gov/lyme/diagnosistesting/index.html.

4. Direct molecular detection and genotyping of Borrelia burgdorferi from whole blood of patients with early Lyme disease;MW Eshoo;PLOS One,2012

5. Achieving molecular diagnostics for Lyme disease;MW Eshoo;Expert Rev Mol Diagn,2013

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3