Sensitivity of radio-photoluminescence glass dosimeters to accumulated doses

Author:

Kim Dong WookORCID,Sung Jiwon,Son Jaeman,Shin Han-Back,Kim Min-Joo,Noh Yu-Yun,Kim Hojae,Han Min Cheol,Kim Jihun,Han Su Chul,Chang Kyung HwanORCID,Kim Hojin,Park Kwangwoo,Yoon Myonggeun,Kim Jinsung,Shin Dongho

Abstract

Background This study investigated the effect of accumulated doses on radio-photoluminescence glass dosimeters (RPLGDs) from measurements involving mega-voltage photons. Methods Forty-five commercially available RPLGDs were irradiated to estimate their dose responses. Photon beams of 6, 10, and 15 MV were irradiated onto the RPLGDs inside a phantom, which were divided into five groups with different doses and energies. Groups 1 and 2 were irradiated at 1, 5, 10, 50, and 100 Gy in a sequential manner; Group 3 was irradiated 10 times with a dose of 10 Gy; and Groups 4 and 5 followed the same method as that of Group 3, but with doses of 50 Gy and 100 Gy, respectively. Each device was subjected to a measurement reading procedure each time irradiation. Results For the annealed Group 1, RPLGD exhibited a linearity response with variance within 5%. For the non-annealed Group 2, readings demonstrated hyperlinearity at 6 MV and 10 MV, and linearity at 15 MV. Following the 100 Gy irradiation, the readings for Group 2 were 118.7 ± 1.9%, 112.2 ± 2.7%, and 101.5 ± 2.3% at 6, 10, and 15 MV, respectively. For Groups 3, 4, and 5, the responsiveness of the RPLGDs gradually decreased as the number of repeated irradiations increased. The percentage readings for the 10th beam irradiation with respect to the readings for the primary beam irradiation were 84.6 ± 1.9%, 87.5 ± 2.4%, and 93.0 ± 3.0% at 6 MV, 10 MV, and 15 MV, respectively. Conclusions The non-annealed RPLGD response to dose was hyperlinear for the 6 MV and 10 MV photon beams but not for the 15 MV photon beam. Additionally, the annealed RPLGD exhibited a fading phenomenon when the measurement was repeated several times and demonstrated a relatively large fading effect at low energies than at high energies.

Funder

Korea Foundation of Nuclear Safety

National Research Foundation of Korea

National Cancer Center Grant

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3