Development of photosynthetic carbon fixation model using multi-excitation wavelength fast repetition rate fluorometry in Lake Biwa

Author:

Kazama TakehiroORCID,Hayakawa Kazuhide,Kuwahara Victor S.,Shimotori Koichi,Imai Akio,Komatsu Kazuhiro

Abstract

Direct measurements of gross primary productivity (GPP) in the water column are essential, but can be spatially and temporally restrictive. Fast repetition rate fluorometry (FRRf) is a bio-optical technique based on chlorophyll a (Chl-a) fluorescence that can estimate the electron transport rate (ETRPSII) at photosystem II (PSII) of phytoplankton in real time. However, the derivation of phytoplankton GPP in carbon units from ETRPSII remains challenging because the electron requirement for carbon fixation (Фe,C), which is mechanistically 4 mol e mol C−1 or above, can vary depending on multiple factors. In addition, FRRf studies are limited in freshwater lakes where phosphorus limitation and cyanobacterial blooms are common. The goal of the present study is to construct a robust Фe,C model for freshwater ecosystems using simultaneous measurements of ETRPSII by FRRf with multi-excitation wavelengths coupled with a traditional carbon fixation rate by the 13C method. The study was conducted in oligotrophic and mesotrophic parts of Lake Biwa from July 2018 to May 2019. The combination of excitation light at 444, 512 and 633 nm correctly estimated ETRPSII of cyanobacteria. The apparent range of Фe,C in the phytoplankton community was 1.1–31.0 mol e mol C−1 during the study period. A generalised linear model showed that the best fit including 12 physicochemical and biological factors explained 67% of the variance in Фe,C. Among all factors, water temperature was the most significant, while photosynthetically active radiation intensity was not. This study quantifies the in situ FRRf method in a freshwater ecosystem, discusses core issues in the methodology to calculate Фe,C, and assesses the applicability of the method for lake GPP prediction.

Funder

Ministry of Environment

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3