Trends and gaps in the use of citizen science derived data as input for species distribution models: A quantitative review

Author:

Feldman Mariano J.ORCID,Imbeau Louis,Marchand Philippe,Mazerolle Marc J.ORCID,Darveau Marcel,Fenton Nicole J.

Abstract

Citizen science (CS) currently refers to the participation of non-scientist volunteers in any discipline of conventional scientific research. Over the last two decades, nature-based CS has flourished due to innovative technology, novel devices, and widespread digital platforms used to collect and classify species occurrence data. For scientists, CS offers a low-cost approach of collecting species occurrence information at large spatial scales that otherwise would be prohibitively expensive. We examined the trends and gaps linked to the use of CS as a source of data for species distribution models (SDMs), in order to propose guidelines and highlight solutions. We conducted a quantitative literature review of 207 peer-reviewed articles to measure how the representation of different taxa, regions, and data types have changed in SDM publications since the 2010s. Our review shows that the number of papers using CS for SDMs has increased at approximately double the rate of the overall number of SDM papers. However, disparities in taxonomic and geographic coverage remain in studies using CS. Western Europe and North America were the regions with the most coverage (73%). Papers on birds (49%) and mammals (19.3%) outnumbered other taxa. Among invertebrates, flying insects including Lepidoptera, Odonata and Hymenoptera received the most attention. Discrepancies between research interest and availability of data were as especially important for amphibians, reptiles and fishes. Compared to studies on animal taxa, papers on plants using CS data remain rare. Although the aims and scope of papers are diverse, species conservation remained the central theme of SDM using CS data. We present examples of the use of CS and highlight recommendations to motivate further research, such as combining multiple data sources and promoting local and traditional knowledge. We hope our findings will strengthen citizen-researchers partnerships to better inform SDMs, especially for less-studied taxa and regions. Researchers stand to benefit from the large quantity of data available from CS sources to improve global predictions of species distributions.

Funder

Université du Québec en Abitibi-Témiscamingue

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3