TRPM8 modulates temperature regulation in a sex-dependent manner without affecting cold-induced bone loss

Author:

Lelis Carvalho Adriana,Treyball Annika,Brooks Daniel J.,Costa Samantha,Neilson Ryan J.,Reagan Michaela R.ORCID,Bouxsein Mary L.,Motyl Katherine J.ORCID

Abstract

Trpm8 (transient receptor potential cation channel, subfamily M, member 8) is expressed by sensory neurons and is involved in the detection of environmental cold temperatures. TRPM8 activity triggers an increase in uncoupling protein 1 (Ucp1)-dependent brown adipose tissue (BAT) thermogenesis. Bone density and marrow adipose tissue are both influenced by rodent housing temperature and brown adipose tissue, but it is unknown if TRPM8 is involved in the co-regulation of thermogenesis and bone homeostasis. To address this, we examined the bone phenotypes of one-year-old Trpm8 knockout mice (Trpm8-KO) after a 4-week cold temperature challenge. Male Trpm8-KO mice had lower bone mineral density than WT, with smaller bone size (femur length and cross-sectional area) being the most striking finding, and exhibited a delayed cold acclimation with increased BAT expression of Dio2 and Cidea compared to WT. In contrast to males, female Trpm8-KO mice had low vertebral bone microarchitectural parameters, but no genotype-specific alterations in body temperature. Interestingly, Trpm8 was not required for cold-induced trabecular bone loss in either sex, but bone marrow adipose tissue in females was significantly suppressed by Trpm8 deletion. In summary, we identified sex differences in the role of TRPM8 in maintaining body temperature, bone microarchitecture and marrow adipose tissue. Identifying mechanisms through which cold temperature and BAT influence bone could help to ameliorate potential bone side effects of obesity treatments designed to stimulate thermogenesis.

Funder

NIH/NIAMS

NIH/NIGMS

NIH/NCI

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3