mbkmeans: Fast clustering for single cell data using mini-batch k-means

Author:

Hicks Stephanie C.ORCID,Liu RuoxiORCID,Ni YuweiORCID,Purdom ElizabethORCID,Risso DavideORCID

Abstract

Single-cell RNA-Sequencing (scRNA-seq) is the most widely used high-throughput technology to measure genome-wide gene expression at the single-cell level. One of the most common analyses of scRNA-seq data detects distinct subpopulations of cells through the use of unsupervised clustering algorithms. However, recent advances in scRNA-seq technologies result in current datasets ranging from thousands to millions of cells. Popular clustering algorithms, such as k-means, typically require the data to be loaded entirely into memory and therefore can be slow or impossible to run with large datasets. To address this problem, we developed the mbkmeans R/Bioconductor package, an open-source implementation of the mini-batch k-means algorithm. Our package allows for on-disk data representations, such as the common HDF5 file format widely used for single-cell data, that do not require all the data to be loaded into memory at one time. We demonstrate the performance of the mbkmeans package using large datasets, including one with 1.3 million cells. We also highlight and compare the computing performance of mbkmeans against the standard implementation of k-means and other popular single-cell clustering methods. Our software package is available in Bioconductor at https://bioconductor.org/packages/mbkmeans.

Funder

National Institutes of Health

Chan Zuckerberg Initiative DAF

ENS-CFM Data Science Chair

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference54 articles.

1. Clustering Algorithms: Their Application to Gene Expression Data;J Oyelade;Bioinform Biol Insights,2016

2. Machine Learning for Medical Imaging;BJ Erickson;Radiographics,2017

3. Identifying cell populations with scRNASeq;TS Andrews;Mol Aspects Med,2018

4. Challenges in unsupervised clustering of single-cell RNA-seq data;VY Kiselev;Nature Reviews Genetics,2019

5. Orchestrating single-cell analysis with Bioconductor;RA Amezquita;Nat Methods,2019

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3