Paradoxical phase response of gamma rhythms facilitates their entrainment in heterogeneous networks

Author:

Xu XizeORCID,Riecke HermannORCID

Abstract

The synchronization of different γ-rhythms arising in different brain areas has been implicated in various cognitive functions. Here, we focus on the effect of the ubiquitous neuronal heterogeneity on the synchronization of ING (interneuronal network gamma) and PING (pyramidal-interneuronal network gamma) rhythms. The synchronization properties of rhythms depends on the response of their collective phase to external input. We therefore determine the macroscopic phase-response curve for finite-amplitude perturbations (fmPRC) of ING- and PING-rhythms in all-to-all coupled networks comprised of linear (IF) or quadratic (QIF) integrate-and-fire neurons. For the QIF networks we complement the direct simulations with the adjoint method to determine the infinitesimal macroscopic PRC (imPRC) within the exact mean-field theory. We show that the intrinsic neuronal heterogeneity can qualitatively modify the fmPRC and the imPRC. Both PRCs can be biphasic and change sign (type II), even though the phase-response curve for the individual neurons is strictly non-negative (type I). Thus, for ING rhythms, say, external inhibition to the inhibitory cells can, in fact, advance the collective oscillation of the network, even though the same inhibition would lead to a delay when applied to uncoupled neurons. This paradoxical advance arises when the external inhibition modifies the internal dynamics of the network by reducing the number of spikes of inhibitory neurons; the advance resulting from this disinhibition outweighs the immediate delay caused by the external inhibition. These results explain how intrinsic heterogeneity allows ING- and PING-rhythms to become synchronized with a periodic forcing or another rhythm for a wider range in the mismatch of their frequencies. Our results identify a potential function of neuronal heterogeneity in the synchronization of coupled γ-rhythms, which may play a role in neural information transfer via communication through coherence.

Funder

National Institute on Deafness and Other Communication Disorders

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3