Learning brain dynamics for decoding and predicting individual differences

Author:

Misra JoyneelORCID,Surampudi Srinivas GovindaORCID,Venkatesh Manasij,Limbachia Chirag,Jaja JosephORCID,Pessoa LuizORCID

Abstract

Insights from functional Magnetic Resonance Imaging (fMRI), as well as recordings of large numbers of neurons, reveal that many cognitive, emotional, and motor functions depend on the multivariate interactions of brain signals. To decode brain dynamics, we propose an architecture based on recurrent neural networks to uncover distributed spatiotemporal signatures. We demonstrate the potential of the approach using human fMRI data during movie-watching data and a continuous experimental paradigm. The model was able to learn spatiotemporal patterns that supported 15-way movie-clip classification (∼90%) at the level of brain regions, and binary classification of experimental conditions (∼60%) at the level of voxels. The model was also able to learn individual differences in measures of fluid intelligence and verbal IQ at levels comparable to that of existing techniques. We propose a dimensionality reduction approach that uncovers low-dimensional trajectories and captures essential informational (i.e., classification related) properties of brain dynamics. Finally, saliency maps and lesion analysis were employed to characterize brain-region/voxel importance, and uncovered how dynamic but consistent changes in fMRI activation influenced decoding performance. When applied at the level of voxels, our framework implements a dynamic version of multivariate pattern analysis. Our approach provides a framework for visualizing, analyzing, and discovering dynamic spatially distributed brain representations during naturalistic conditions.

Funder

National Institute of Mental Health

College of Health and Behavioral Sciences, University of Central Arkansas

WU-Minn Consortium

McDonnell Center for Systems Neuroscience at Washington University

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference74 articles.

1. Perceiving Event Dynamics and Parsing Hollywood Films;J Cutting;Journal of experimental psychology Human perception and performance,2012

2. Dynamic Threat Processing;C Meyer;Journal of Cognitive Neuroscience,2019

3. Controllability over stressor decreases responses in key threat-related brain areas;C Limbachia;Communications Biology,2021

4. Distributed and overlapping representations of faces and objects in ventral temporal cortex;JV Haxby;Science,2001

5. Predicting the orientation of invisible stimuli from activity in human primary visual cortex;JD Haynes;Nature Neuroscience,2005

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3