A mechanistic framework for a priori pharmacokinetic predictions of orally inhaled drugs

Author:

Hartung NiklasORCID,Borghardt Jens MarkusORCID

Abstract

The fate of orally inhaled drugs is determined by pulmonary pharmacokinetic processes such as particle deposition, pulmonary drug dissolution, and mucociliary clearance. Even though each single process has been systematically investigated, a quantitative understanding on the interaction of processes remains limited and therefore identifying optimal drug and formulation characteristics for orally inhaled drugs is still challenging. To investigate this complex interplay, the pulmonary processes can be integrated into mathematical models. However, existing modeling attempts considerably simplify these processes or are not systematically evaluated against (clinical) data. In this work, we developed a mathematical framework based on physiologically-structured population equations to integrate all relevant pulmonary processes mechanistically. A tailored numerical resolution strategy was chosen and the mechanistic model was evaluated systematically against data from different clinical studies. Without adapting the mechanistic model or estimating kinetic parameters based on individual study data, the developed model was able to predict simultaneously (i) lung retention profiles of inhaled insoluble particles, (ii) particle size-dependent pharmacokinetics of inhaled monodisperse particles, (iii) pharmacokinetic differences between inhaled fluticasone propionate and budesonide, as well as (iv) pharmacokinetic differences between healthy volunteers and asthmatic patients. Finally, to identify the most impactful optimization criteria for orally inhaled drugs, the developed mechanistic model was applied to investigate the impact of input parameters on both the pulmonary and systemic exposure. Interestingly, the solubility of the inhaled drug did not have any relevant impact on the local and systemic pharmacokinetics. Instead, the pulmonary dissolution rate, the particle size, the tissue affinity, and the systemic clearance were the most impactful potential optimization parameters. In the future, the developed prediction framework should be considered a powerful tool for identifying optimal drug and formulation characteristics.

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference78 articles.

1. Systemic adverse effects of inhaled corticosteroid therapy: A systematic review and meta-analysis;BJ Lipworth;Arch Intern Med,1999

2. Inhaled Therapy in Respiratory Disease: The Complex Interplay of Pulmonary Kinetic Processes;JM Borghardt;Can Respir J,2018

3. Assessment of systemic effects of inhaled glucocorticosteroids: comparison of the effects of inhaled budesonide and oral prednisolone on adrenal function and markers of bone turnover;BH Jennings;Eur J Clin Pharmacol,1991

4. Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy For the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease.; 2015.

5. Global Initiative for Asthma (GINA). Global strategy for asthma management and prevention.; 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3