Investigating the representation of uncertainty in neuronal circuits

Author:

Dehaene Guillaume P.ORCID,Coen-Cagli RubenORCID,Pouget AlexandreORCID

Abstract

Skilled behavior often displays signatures of Bayesian inference. In order for the brain to implement the required computations, neuronal activity must carry accurate information about the uncertainty of sensory inputs. Two major approaches have been proposed to study neuronal representations of uncertainty. The first one, the Bayesian decoding approach, aims primarily at decoding the posterior probability distribution of the stimulus from population activity using Bayes’ rule, and indirectly yields uncertainty estimates as a by-product. The second one, which we call the correlational approach, searches for specific features of neuronal activity (such as tuning-curve width and maximum firing-rate) which correlate with uncertainty. To compare these two approaches, we derived a new normative model of sound source localization by Interaural Time Difference (ITD), that reproduces a wealth of behavioral and neural observations. We found that several features of neuronal activity correlated with uncertainty on average, but none provided an accurate estimate of uncertainty on a trial-by-trial basis, indicating that the correlational approach may not reliably identify which aspects of neuronal responses represent uncertainty. In contrast, the Bayesian decoding approach reveals that the activity pattern of the entire population was required to reconstruct the trial-to-trial posterior distribution with Bayes’ rule. These results suggest that uncertainty is unlikely to be represented in a single feature of neuronal activity, and highlight the importance of using a Bayesian decoding approach when exploring the neural basis of uncertainty.

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3