Epigenetic instability may alter cell state transitions and anticancer drug resistance

Author:

Saini AnshulORCID,Gallo James M.ORCID

Abstract

Drug resistance is a significant obstacle to successful and durable anti-cancer therapy. Targeted therapy is often effective during early phases of treatment; however, eventually cancer cells adapt and transition to drug-resistant cells states rendering the treatment ineffective. It is proposed that cell state can be a determinant of drug efficacy and manipulated to affect the development of anticancer drug resistance. In this work, we developed two stochastic cell state models and an integrated stochastic-deterministic model referenced to brain tumors. The stochastic cell state models included transcriptionally-permissive and -restrictive states based on the underlying hypothesis that epigenetic instability mitigates lock-in of drug-resistant states. When moderate epigenetic instability was implemented the drug-resistant cell populations were reduced, on average, by 60%, whereas a high level of epigenetic disruption reduced them by about 90%. The stochastic-deterministic model utilized the stochastic cell state model to drive the dynamics of the DNA repair enzyme, methylguanine-methyltransferase (MGMT), that repairs temozolomide (TMZ)-induced O6-methylguanine (O6mG) adducts. In the presence of epigenetic instability, the production of MGMT decreased that coincided with an increase of O6mG adducts following a multiple-dose regimen of TMZ. Generation of epigenetic instability via epigenetic modifier therapy could be a viable strategy to mitigate anticancer drug resistance.

Funder

State University of New York Empire Innovation program

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3