On realized serial and generation intervals given control measures: The COVID-19 pandemic case

Author:

Torneri AndreaORCID,Libin PieterORCID,Scalia Tomba GianpaoloORCID,Faes ChristelORCID,Wood James G.,Hens NielORCID

Abstract

The SARS-CoV-2 pathogen is currently spreading worldwide and its propensity for presymptomatic and asymptomatic transmission makes it difficult to control. The control measures adopted in several countries aim at isolating individuals once diagnosed, limiting their social interactions and consequently their transmission probability. These interventions, which have a strong impact on the disease dynamics, can affect the inference of the epidemiological quantities. We first present a theoretical explanation of the effect caused by non-pharmaceutical intervention measures on the mean serial and generation intervals. Then, in a simulation study, we vary the assumed efficacy of control measures and quantify the effect on the mean and variance of realized generation and serial intervals. The simulation results show that the realized serial and generation intervals both depend on control measures and their values contract according to the efficacy of the intervention strategies. Interestingly, the mean serial interval differs from the mean generation interval. The deviation between these two values depends on two factors. First, the number of undiagnosed infectious individuals. Second, the relationship between infectiousness, symptom onset and timing of isolation. Similarly, the standard deviations of realized serial and generation intervals do not coincide, with the former shorter than the latter on average. The findings of this study are directly relevant to estimates performed for the current COVID-19 pandemic. In particular, the effective reproduction number is often inferred using both daily incidence data and the generation interval. Failing to account for either contraction or mis-specification by using the serial interval could lead to biased estimates of the effective reproduction number. Consequently, this might affect the choices made by decision makers when deciding which control measures to apply based on the value of the quantity thereof.

Funder

Universiteit Antwerpen

European Union’s Horizon 2020

Fonds voor Wetenschappelijk Onderzoek

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3