Abstract
Navigation of fast migrating cells such as amoeba Dictyostelium and immune cells are tightly associated with their morphologies that range from steady polarized forms that support high directionality to those more complex and variable when making frequent turns. Model simulations are essential for quantitative understanding of these features and their origins, however systematic comparisons with real data are underdeveloped. Here, by employing deep-learning-based feature extraction combined with phase-field modeling framework, we show that a low dimensional feature space for 2D migrating cell morphologies obtained from the shape stereotype of keratocytes, Dictyostelium and neutrophils can be fully mapped by an interlinked signaling network of cell-polarization and protrusion dynamics. Our analysis links the data-driven shape analysis to the underlying causalities by identifying key parameters critical for migratory morphologies both normal and aberrant under genetic and pharmacological perturbations. The results underscore the importance of deciphering self-organizing states and their interplay when characterizing morphological phenotypes.
Funder
Core Research for Evolutional Science and Technology
Ministry of Education, Culture, Sports, Science and Technology
Exploratory Research Center on Life and Living Systems
Japan Society for the Promotion of Science
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献