Task-induced neural covariability as a signature of approximate Bayesian learning and inference

Author:

Lange Richard D.ORCID,Haefner Ralf M.ORCID

Abstract

Perception is often characterized computationally as an inference process in which uncertain or ambiguous sensory inputs are combined with prior expectations. Although behavioral studies have shown that observers can change their prior expectations in the context of a task, robust neural signatures of task-specific priors have been elusive. Here, we analytically derive such signatures under the general assumption that the responses of sensory neurons encode posterior beliefs that combine sensory inputs with task-specific expectations. Specifically, we derive predictions for the task-dependence of correlated neural variability and decision-related signals in sensory neurons. The qualitative aspects of our results are parameter-free and specific to the statistics of each task. The predictions for correlated variability also differ from predictions of classic feedforward models of sensory processing and are therefore a strong test of theories of hierarchical Bayesian inference in the brain. Importantly, we find that Bayesian learning predicts an increase in so-called “differential correlations” as the observer’s internal model learns the stimulus distribution, and the observer’s behavioral performance improves. This stands in contrast to classic feedforward encoding/decoding models of sensory processing, since such correlations are fundamentally information-limiting. We find support for our predictions in data from existing neurophysiological studies across a variety of tasks and brain areas. Finally, we show in simulation how measurements of sensory neural responses can reveal information about a subject’s internal beliefs about the task. Taken together, our results reinterpret task-dependent sources of neural covariability as signatures of Bayesian inference and provide new insights into their cause and their function.

Funder

National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3