A weighted constraint satisfaction approach to human goal-directed decision making

Author:

Li YuxuanORCID,McClelland James L.ORCID

Abstract

When we plan for long-range goals, proximal information cannot be exploited in a blindly myopic way, as relevant future information must also be considered. But when a subgoal must be resolved first, irrelevant future information should not interfere with the processing of more proximal, subgoal-relevant information. We explore the idea that decision making in both situations relies on the flexible modulation of the degree to which different pieces of information under consideration are weighted, rather than explicitly decomposing a problem into smaller parts and solving each part independently. We asked participants to find the shortest goal-reaching paths in mazes and modeled their initial path choices as a noisy, weighted information integration process. In a base task where choosing the optimal initial path required weighting starting-point and goal-proximal factors equally, participants did take both constraints into account, with participants who made more accurate choices tending to exhibit more balanced weighting. The base task was then embedded as an initial subtask in a larger maze, where the same two factors constrained the optimal path to a subgoal, and the final goal position was irrelevant to the initial path choice. In this more complex task, participants’ choices reflected predominant consideration of the subgoal-relevant constraints, but also some influence of the initially-irrelevant final goal. More accurate participants placed much less weight on the optimality-irrelevant goal and again tended to weight the two initially-relevant constraints more equally. These findings suggest that humans may rely on a graded, task-sensitive weighting of multiple constraints to generate approximately optimal decision outcomes in both hierarchical and non-hierarchical goal-directed tasks.

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference40 articles.

1. Continuous track paths reveal additive evidence integration in multistep decision making;CB Calderon;Proceedings of the National Academy of Sciences of the United States of America,2017

2. The neural representation of prospective choice during spatial planning and decisions;R Kaplan;PLoS Biology,2017

3. Evidence integration in model-based tree search;A Solway;Proceedings of the National Academy of Sciences of the United States of America,2015

4. Wickelgren WA. How to solve problems: Elements of a theory of problems and problem solving. WH Freeman; 1974.

5. Newell A, Simon HA. Human problem solving. Prentice-hall; 1972.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3