Rats spontaneously perceive global motion direction of drifting plaids

Author:

Matteucci GiulioORCID,Zattera Benedetta,Bellacosa Marotti Rosilari,Zoccolan DavideORCID

Abstract

Computing global motion direction of extended visual objects is a hallmark of primate high-level vision. Although neurons selective for global motion have also been found in mouse visual cortex, it remains unknown whether rodents can combine multiple motion signals into global, integrated percepts. To address this question, we trained two groups of rats to discriminate either gratings (G group) or plaids (i.e., superpositions of gratings with different orientations; P group) drifting horizontally along opposite directions. After the animals learned the task, we applied a visual priming paradigm, where presentation of the target stimulus was preceded by the brief presentation of either a grating or a plaid. The extent to which rat responses to the targets were biased by such prime stimuli provided a measure of the spontaneous, perceived similarity between primes and targets. We found that gratings and plaids, when used as primes, were equally effective at biasing the perception of plaid direction for the rats of the P group. Conversely, for the G group, only the gratings acted as effective prime stimuli, while the plaids failed to alter the perception of grating direction. To interpret these observations, we simulated a decision neuron reading out the representations of gratings and plaids, as conveyed by populations of either component or pattern cells (i.e., local or global motion detectors). We concluded that the findings for the P group are highly consistent with the existence of a population of pattern cells, playing a functional role similar to that demonstrated in primates. We also explored different scenarios that could explain the failure of the plaid stimuli to elicit a sizable priming magnitude for the G group. These simulations yielded testable predictions about the properties of motion representations in rodent visual cortex at the single-cell and circuitry level, thus paving the way to future neurophysiology experiments.

Funder

FP7 Ideas: European Research Council

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference83 articles.

1. Visual Guidance of Smooth Pursuit Eye Movements;SG Lisberger;Annu Rev Vis Sci.,2015

2. Motion Perception: From Detection to Interpretation;S Nishida;Annu Rev Vis Sci.,2018

3. Structure and function of visual area MT;RT Born;Annu Rev Neurosci,2005

4. Higher Order Visual Processing in Macaque Extrastriate Cortex;GA Orban;Physiol Rev,2008

5. Phenomenal coherence of moving visual patterns;EH Adelson;Nature,1982

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3