GCSENet: A GCN, CNN and SENet ensemble model for microRNA-disease association prediction

Author:

Li ZhongORCID,Jiang Kaiyancheng,Qin ShengweiORCID,Zhong YijunORCID,Elofsson ArneORCID

Abstract

Recently, an increasing number of studies have demonstrated that miRNAs are involved in human diseases, indicating that miRNAs might be a potential pathogenic factor for various diseases. Therefore, figuring out the relationship between miRNAs and diseases plays a critical role in not only the development of new drugs, but also the formulation of individualized diagnosis and treatment. As the prediction of miRNA-disease association via biological experiments is expensive and time-consuming, computational methods have a positive effect on revealing the association. In this study, a novel prediction model integrating GCN, CNN and Squeeze-and-Excitation Networks (GCSENet) was constructed for the identification of miRNA-disease association. The model first captured features by GCN based on a heterogeneous graph including diseases, genes and miRNAs. Then, considering the different effects of genes on each type of miRNA and disease, as well as the different effects of the miRNA-gene and disease-gene relationships on miRNA-disease association, a feature weight was set and a combination of miRNA-gene and disease-gene associations was added as feature input for the convolution operation in CNN. Furthermore, the squeeze and excitation blocks of SENet were applied to determine the importance of each feature channel and enhance useful features by means of the attention mechanism, thus achieving a satisfactory prediction of miRNA-disease association. The proposed method was compared against other state-of-the-art methods. It achieved an AUROC score of 95.02% and an AUPR score of 95.55% in a 10-fold cross-validation, which led to the finding that the proposed method is superior to these popular methods on most of the performance evaluation indexes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3