Hierarchy and control of ageing-related methylation networks

Author:

Palla GergelyORCID,Pollner PéterORCID,Börcsök JuditORCID,Major AndrásORCID,Molnár Béla,Csabai IstvánORCID

Abstract

DNA methylation provides one of the most widely studied biomarkers of ageing. Since the methylation of CpG dinucleotides function as switches in cellular mechanisms, it is plausible to assume that by proper adjustment of these switches age may be tuned. Though, adjusting hundreds of CpG methylation levels coherently may never be feasible and changing just a few positions may lead to biologically unstable state. A prominent example of methylation-based age estimators is provided by Horvath’s clock, based on 353 CpG dinucleotides, showing a high correlation (not necessarily causation) with chronological age across multiple tissue types. On this small subset of CpG dinucleotides we demonstrate how the adjustment of one methylation level leads to a cascade of changes at other sites. Among the studied subset, we locate the most important CpGs (and related genes) that may have a large influence on the rest of the sub-system. According to our analysis, the structure of this network is way more hierarchical compared to what one would expect based on ensembles of uncorrelated connections. Therefore, only a handful of CpGs is enough to modify the system towards a desired state. When propagation of the change over the network is taken into account, the resulting modification in the predicted age can be significantly larger compared to the effect of isolated CpG perturbations. By adjusting the most influential single CpG site and following the propagation of methylation level changes we can reach up to 5.74 years in virtual age reduction, significantly larger than without taking into account of the network control. Extending our approach to the whole methylation network may identify key nodes that have controller role in the ageing process.

Funder

Velux Foundation

Hungarian National Research, Development and Innovation Office

research excellence programme of the ministry for innovation and technology in hungary, within the framework of the digital biomarker thematic programme of the semmelweis university

nrdi office within the framework of the artificial intelligence national laboratory program

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference87 articles.

1. Biomarkers of aging;G Baker;Exp Gerontol,1988

2. The future of aging interventions;HR Warner;J Gerontol A Biol Sci Med Sci,2004

3. Biological Age Predictors;J Jylhävä;EBioMedicine,2017

4. DNA Methylation Clocks in Aging: Categories, Causes, and Consequences;AE Field;Mol Cell,2018

5. DNA methylation age of human tissues and cell types;S Horvath;Genome Biol,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3