Inferring the structures of signaling motifs from paired dynamic traces of single cells

Author:

Haggerty Raymond A.ORCID,Purvis Jeremy E.ORCID

Abstract

Individual cells show variability in their signaling dynamics that often correlates with phenotypic responses, indicating that cell-to-cell variability is not merely noise but can have functional consequences. Based on this observation, we reasoned that cell-to-cell variability under the same treatment condition could be explained in part by a single signaling motif that maps different upstream signals into a corresponding set of downstream responses. If this assumption holds, then repeated measurements of upstream and downstream signaling dynamics in a population of cells could provide information about the underlying signaling motif for a given pathway, even when no prior knowledge of that motif exists. To test these two hypotheses, we developed a computer algorithm called MISC (Motif Inference from Single Cells) that infers the underlying signaling motif from paired time-series measurements from individual cells. When applied to measurements of transcription factor and reporter gene expression in the yeast stress response, MISC predicted signaling motifs that were consistent with previous mechanistic models of transcription. The ability to detect the underlying mechanism became less certain when a cell’s upstream signal was randomly paired with another cell’s downstream response, demonstrating how averaging time-series measurements across a population obscures information about the underlying signaling mechanism. In some cases, motif predictions improved as more cells were added to the analysis. These results provide evidence that mechanistic information about cellular signaling networks can be systematically extracted from the dynamical patterns of single cells.

Funder

National Institute of General Medical Sciences

Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Science Foundation CAREER Award

National Heart, Lung, and Blood Institute

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3