PPM-Decay: A computational model of auditory prediction with memory decay

Author:

Harrison Peter M. C.ORCID,Bianco RobertaORCID,Chait MariaORCID,Pearce Marcus T.ORCID

Abstract

Statistical learning and probabilistic prediction are fundamental processes in auditory cognition. A prominent computational model of these processes is Prediction by Partial Matching (PPM), a variable-order Markov model that learns by internalizing n-grams from training sequences. However, PPM has limitations as a cognitive model: in particular, it has a perfect memory that weights all historic observations equally, which is inconsistent with memory capacity constraints and recency effects observed in human cognition. We address these limitations with PPM-Decay, a new variant of PPM that introduces a customizable memory decay kernel. In three studies—one with artificially generated sequences, one with chord sequences from Western music, and one with new behavioral data from an auditory pattern detection experiment—we show how this decay kernel improves the model’s predictive performance for sequences whose underlying statistics change over time, and enables the model to capture effects of memory constraints on auditory pattern detection. The resulting model is available in our new open-source R package, ppm (https://github.com/pmcharrison/ppm).

Funder

Engineering and Physical Sciences Research Council

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference117 articles.

1. Modeling the auditory scene: predictive regularity representations and perceptual objects;I Winkler;Trends in Cognitive Sciences,2009

2. Evidence for a hierarchy of predictions and prediction errors in human cortex;C Wacongne;Proceedings of the National Academy of Sciences,2011

3. Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns;N Barascud;Proceedings of the National Academy of Sciences of the United States of America,2016

4. Outlier responses reflect sensitivity to statistical structure in the human brain;MI Garrido;PLoS Computational Biology,2013

5. Information-theoretic properties of auditory sequences dynamically influence expectation and memory;K Agres;Cognitive Science,2018

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3