Measuring context dependency in birdsong using artificial neural networks

Author:

Morita TakashiORCID,Koda HirokiORCID,Okanoya KazuoORCID,Tachibana Ryosuke O.ORCID

Abstract

Context dependency is a key feature in sequential structures of human language, which requires reference between words far apart in the produced sequence. Assessing how long the past context has an effect on the current status provides crucial information to understand the mechanism for complex sequential behaviors. Birdsongs serve as a representative model for studying the context dependency in sequential signals produced by non-human animals, while previous reports were upper-bounded by methodological limitations. Here, we newly estimated the context dependency in birdsongs in a more scalable way using a modern neural-network-based language model whose accessible context length is sufficiently long. The detected context dependency was beyond the order of traditional Markovian models of birdsong, but was consistent with previous experimental investigations. We also studied the relation between the assumed/auto-detected vocabulary size of birdsong (i.e., fine- vs. coarse-grained syllable classifications) and the context dependency. It turned out that the larger vocabulary (or the more fine-grained classification) is assumed, the shorter context dependency is detected.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Mitsubishi Foundation Research Grants in the Natural Sciences

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3