Modelling the visual world of a velvet worm
-
Published:2021-07-28
Issue:7
Volume:17
Page:e1008808
-
ISSN:1553-7358
-
Container-title:PLOS Computational Biology
-
language:en
-
Short-container-title:PLoS Comput Biol
Author:
Ljungholm MikaelORCID,
Nilsson Dan-E.ORCID
Abstract
In many animal phyla, eyes are small and provide only low-resolution vision for general orientation in the environment. Because these primitive eyes rarely have a defined image plane, traditional visual-optics principles cannot be applied. To assess the functional capacity of such eyes we have developed modelling principles based on ray tracing in 3D reconstructions of eye morphology, where refraction on the way to the photoreceptors and absorption in the photopigment are calculated incrementally for ray bundles from all angles within the visual field. From the ray tracing, we calculate the complete angular acceptance function of each photoreceptor in the eye, revealing the visual acuity for all parts of the visual field. We then use this information to generate visual filters that can be applied to high resolution images or videos to convert them to accurate representations of the spatial information seen by the animal. The method is here applied to the 0.1 mm eyes of the velvet worm Euperipatoides rowelli (Onychophora). These eyes of these terrestrial invertebrates consist of a curved cornea covering an irregular but optically homogeneous lens directly joining a retina packed with photoreceptive rhabdoms. 3D reconstruction from histological sections revealed an asymmetric eye, where the retina is deeper in the forward-pointing direction. The calculated visual acuity also reveals performance differences across the visual field, with a maximum acuity of about 0.11 cycles/deg in the forward direction despite laterally pointing eyes. The results agree with previous behavioural measurements of visual acuity, and suggest that velvet worm vision is adequate for orientation and positioning within the habitat.
Funder
Knut och Alice Wallenbergs Stiftelse
Vetenskapsrådet
Publisher
Public Library of Science (PLoS)
Subject
Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics
Reference33 articles.
1. Maps of the acute zones of fly eyes;MF Land;J. Comp Physiol A,1985
2. The quality of vision in the ctenid spider Cupiennius salei;MF Land;J exp Biol,1992
3. Retinal topographic maps: A glimps into the animal’s visual world;E Hauzman;Sensory nervous system,2018
4. The metabolic cost of neural information;SB Laughlin;Nature Neurosci,1998
5. Energy limitation as a selective pressure on the evolution of sensory systems;JE Niven;J exp Biol,2008
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献