Modelling thalamocortical circuitry shows that visually induced LTP changes laminar connectivity in human visual cortex

Author:

Sumner Rachael L.ORCID,Spriggs Meg J.ORCID,Shaw Alexander D.ORCID

Abstract

Neuroplasticity is essential to learning and memory in the brain; it has therefore also been implicated in numerous neurological and psychiatric disorders, making measuring the state of neuroplasticity of foremost importance to clinical neuroscience. Long-term potentiation (LTP) is a key mechanism of neuroplasticity and has been studied extensively, and invasively in non-human animals. Translation to human application largely relies on the validation of non-invasive measures of LTP. The current study presents a generative thalamocortical computational model of visual cortex for investigating and replicating interlaminar connectivity changes using non-invasive EEG recording of humans. The model is combined with a commonly used visual sensory LTP paradigm and fit to the empirical EEG data using dynamic causal modelling. The thalamocortical model demonstrated remarkable accuracy recapitulating post-tetanus changes seen in invasive research, including increased excitatory connectivity from thalamus to layer IV and from layer IV to II/III, established major sites of LTP in visual cortex. These findings provide justification for the implementation of the presented thalamocortical model for ERP research, including to provide increased detail on the nature of changes that underlie LTP induced in visual cortex. Future applications include translating rodent findings to non-invasive research in humans concerning deficits to LTP that may underlie neurological and psychiatric disease.

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3