Retinal optic flow during natural locomotion

Author:

Matthis Jonathan SamirORCID,Muller Karl S.ORCID,Bonnen Kathryn L.ORCID,Hayhoe Mary M.ORCID

Abstract

We examine the structure of the visual motion projected on the retina during natural locomotion in real world environments. Bipedal gait generates a complex, rhythmic pattern of head translation and rotation in space, so without gaze stabilization mechanisms such as the vestibular-ocular-reflex (VOR) a walker’s visually specified heading would vary dramatically throughout the gait cycle. The act of fixation on stable points in the environment nulls image motion at the fovea, resulting in stable patterns of outflow on the retinae centered on the point of fixation. These outflowing patterns retain a higher order structure that is informative about the stabilized trajectory of the eye through space. We measure this structure by applying the curl and divergence operations on the retinal flow velocity vector fields and found features that may be valuable for the control of locomotion. In particular, the sign and magnitude of foveal curl in retinal flow specifies the body’s trajectory relative to the gaze point, while the point of maximum divergence in the retinal flow field specifies the walker’s instantaneous overground velocity/momentum vector in retinotopic coordinates. Assuming that walkers can determine the body position relative to gaze direction, these time-varying retinotopic cues for the body’s momentum could provide a visual control signal for locomotion over complex terrain. In contrast, the temporal variation of the eye-movement-free, head-centered flow fields is large enough to be problematic for use in steering towards a goal. Consideration of optic flow in the context of real-world locomotion therefore suggests a re-evaluation of the role of optic flow in the control of action during natural behavior.

Funder

National Eye Institute

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference100 articles.

1. The Evolution of Gaze Shifting Eye Movements

2. Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram: Human cone ERG;C Friedburg;The Journal of Physiology,2004

3. Freely-moving mice visually pursue prey using a retinal area with least optic flow;CD Holmgren;Neuroscience,2021

4. The evolutionary history of eye movements;GL Walls;Vision Research,1962

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3