Construction of disease-specific cytokine profiles by associating disease genes with immune responses

Author:

Liu TianyunORCID,Wang ShiyinORCID,Wornow MichaelORCID,Altman Russ B.ORCID

Abstract

The pathogenesis of many inflammatory diseases is a coordinated process involving metabolic dysfunctions and immune response—usually modulated by the production of cytokines and associated inflammatory molecules. In this work, we seek to understand how genes involved in pathogenesis which are often not associated with the immune system in an obvious way communicate with the immune system. We have embedded a network of human protein-protein interactions (PPI) from the STRING database with 14,707 human genes using feature learning that captures high confidence edges. We have found that our predicted Association Scores derived from the features extracted from STRING’s high confidence edges are useful for predicting novel connections between genes, thus enabling the construction of a full map of predicted associations for all possible pairs between 14,707 human genes. In particular, we analyzed the pattern of associations for 126 cytokines and found that the six patterns of cytokine interaction with human genes are consistent with their functional classifications. To define the disease-specific roles of cytokines we have collected gene sets for 11,944 diseases from DisGeNET. We used these gene sets to predict disease-specific gene associations with cytokines by calculating the normalized average Association Scores between disease-associated gene sets and the 126 cytokines; this creates a unique profile of inflammatory genes (both known and predicted) for each disease. We validated our predicted cytokine associations by comparing them to known associations for 171 diseases. The predicted cytokine profiles correlate (p-value<0.0003) with the known ones in 95 diseases. We further characterized the profiles of each disease by calculating an “Inflammation Score” that summarizes different modes of immune responses. Finally, by analyzing subnetworks formed between disease-specific pathogenesis genes, hormones, receptors, and cytokines, we identified the key genes responsible for interactions between pathogenesis and inflammatory responses. These genes and the corresponding cytokines used by different immune disorders suggest unique targets for drug discovery.

Funder

National Institute of General Medical Sciences

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3