Evaluation and comparison of multi-omics data integration methods for cancer subtyping

Author:

Duan RanORCID,Gao LinORCID,Gao Yong,Hu Yuxuan,Xu HanORCID,Huang MingfengORCID,Song Kuo,Wang Hongda,Dong Yongqiang,Jiang Chaoqun,Zhang Chenxing,Jia Songwei

Abstract

Computational integrative analysis has become a significant approach in the data-driven exploration of biological problems. Many integration methods for cancer subtyping have been proposed, but evaluating these methods has become a complicated problem due to the lack of gold standards. Moreover, questions of practical importance remain to be addressed regarding the impact of selecting appropriate data types and combinations on the performance of integrative studies. Here, we constructed three classes of benchmarking datasets of nine cancers in TCGA by considering all the eleven combinations of four multi-omics data types. Using these datasets, we conducted a comprehensive evaluation of ten representative integration methods for cancer subtyping in terms of accuracy measured by combining both clustering accuracy and clinical significance, robustness, and computational efficiency. We subsequently investigated the influence of different omics data on cancer subtyping and the effectiveness of their combinations. Refuting the widely held intuition that incorporating more types of omics data always produces better results, our analyses showed that there are situations where integrating more omics data negatively impacts the performance of integration methods. Our analyses also suggested several effective combinations for most cancers under our studies, which may be of particular interest to researchers in omics data analysis.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Sciences and Engineering Research Council of Canada Discovery Grant

Fundamental Research Funds for the Central Universities

innovation fund of xidian university

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modelling and Simulation,Ecology, Evolution, Behavior and Systematics

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3