Testing structural identifiability by a simple scaling method

Author:

Castro MarioORCID,de Boer Rob J.ORCID

Abstract

Successful mathematical modeling of biological processes relies on the expertise of the modeler to capture the essential mechanisms in the process at hand and on the ability to extract useful information from empirical data. A model is said to be structurally unidentifiable, if different quantitative sets of parameters provide the same observable outcome. This is typical (but not exclusive) of partially observed problems in which only a few variables can be experimentally measured. Most of the available methods to test the structural identifiability of a model are either too complex mathematically for the general practitioner to be applied, or require involved calculations or numerical computation for complex non-linear models. In this work, we present a new analytical method to test structural identifiability of models based on ordinary differential equations, based on the invariance of the equations under the scaling transformation of its parameters. The method is based on rigorous mathematical results but it is easy and quick to apply, even to test the identifiability of sophisticated highly non-linear models. We illustrate our method by example and compare its performance with other existing methods in the literature.

Funder

Agencia Estatal de Investigación

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

Reference49 articles.

1. Mathematics in Modern Immunology;M Castro;Interface focus,2016

2. On structural identifiability;R Bellman;Mathematical Biosciences,1970

3. Mixed growth curve data do not suffice to fully characterize the dynamics of mixed cultures;E Balsa-Canto;Proceedings of the National Academy of Sciences,2020

4. Reply to Balsa-Canto et al.: Growth models are applicable to growth data, not to stationary-phase data;Y Ram;Proceedings of the National Academy of Sciences,2020

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3