PEDF, a pleiotropic WTC-LI biomarker: Machine learning biomarker identification and validation

Author:

Crowley George,Kim JamesORCID,Kwon SophiaORCID,Lam RachelORCID,Prezant David J.,Liu MenglingORCID,Nolan AnnaORCID

Abstract

Biomarkers predict World Trade Center-Lung Injury (WTC-LI); however, there remains unaddressed multicollinearity in our serum cytokines, chemokines, and high-throughput platform datasets used to phenotype WTC-disease. To address this concern, we used automated, machine-learning, high-dimensional data pruning, and validated identified biomarkers. The parent cohort consisted of male, never-smoking firefighters with WTC-LI (FEV1, %Pred< lower limit of normal (LLN); n = 100) and controls (n = 127) and had their biomarkers assessed. Cases and controls (n = 15/group) underwent untargeted metabolomics, then feature selection performed on metabolites, cytokines, chemokines, and clinical data. Cytokines, chemokines, and clinical biomarkers were validated in the non-overlapping parent-cohort via binary logistic regression with 5-fold cross validation. Random forests of metabolites (n = 580), clinical biomarkers (n = 5), and previously assayed cytokines, chemokines (n = 106) identified that the top 5% of biomarkers important to class separation included pigment epithelium-derived factor (PEDF), macrophage derived chemokine (MDC), systolic blood pressure, macrophage inflammatory protein-4 (MIP-4), growth-regulated oncogene protein (GRO), monocyte chemoattractant protein-1 (MCP-1), apolipoprotein-AII (Apo-AII), cell membrane metabolites (sphingolipids, phospholipids), and branched-chain amino acids. Validated models via confounder-adjusted (age on 9/11, BMI, exposure, and pre-9/11 FEV1, %Pred) binary logistic regression had AUCROC [0.90(0.84–0.96)]. Decreased PEDF and MIP-4, and increased Apo-AII were associated with increased odds of WTC-LI. Increased GRO, MCP-1, and simultaneously decreased MDC were associated with decreased odds of WTC-LI. In conclusion, automated data pruning identified novel WTC-LI biomarkers; performance was validated in an independent cohort. One biomarker—PEDF, an antiangiogenic agent—is a novel, predictive biomarker of particulate-matter-related lung disease. Other biomarkers—GRO, MCP-1, MDC, MIP-4—reveal immune cell involvement in WTC-LI pathogenesis. Findings of our automated biomarker identification warrant further investigation into these potential pharmacotherapy targets.

Funder

NHLBI

Saperstein Scholars Fund

CDC/NIOSH

Clinical Center of Excellence

Data Center

Publisher

Public Library of Science (PLoS)

Subject

Computational Theory and Mathematics,Cellular and Molecular Neuroscience,Genetics,Molecular Biology,Ecology,Modeling and Simulation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3